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Abstract

A novel point assembly method (PAM) is presented for stress analysis for two-dimensional solids. In the present
method, the boundaries of the problem domain are represented by a set of discrete points, and the domain itself is
represented by properly scattered points. The displacement in the influence triangular areas of a point is interpolated by
the displacements at the point and pairs of surrounding points using shape functions. The shape functions used in this
work are obtained in the same way as those of a triangular element in the conventional finite element method (FEM). A
variational (weak) form of the equilibrium equation is used to produce a set of system equations. These equations are
assembled for all the points in the domain, and solved for the displacement field. Stresses and strains at a point are then
computed using the displacements obtained for the point and pairs of the surrounding points. A PAM program with an
automatic point-searching algorithm has been developed in FORTRAN. Patch tests and convergence studies have been
carried out to verify the convergence of the present method and program. Examples are also presented to demonstrate
the efficiency and accuracy of the present method compared with analytical solutions as well as the conventional FEM
solutions. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

The finite element method (FEM) is robust, and thoroughly developed for static and dynamic, linear and
non-linear stress analyses of solids and structures. It is widely used in engineering due to its versatility for
solids and structures of complex geometry and its flexibility for many types of non-linear problems.
However, limitations of the FEM are becoming evident gradually for problems related to the distortion of
elements caused by extreme conditions such as high velocity impacts and explosion/shock loadings, and
problems of simulating breakage and crack progressing in materials. A close examination of these problems
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associated with the FEM will leads one’s attention to the root of the problems: the use of “‘element”, the
building block of the FEM. As long as the element is used, the problems mentioned above will not have an
easy solution. Therefore, the idea of getting rid of the elements has been naturally evolving. Concepts of
element free or meshless methods have been proposed during the past years. The element free method
(EFM) has great potential for solving difficult problems associated with element distortion. Adaptive
schemes can be easily developed, as there is no element in the mesh. In crack growth problems, for example,
nodes can be easily added around a crack tip to capture the stress concentration with a desired accuracy;
this nodal refinement can be moved with a propagation crack through a background arrangement of nodes
associated with the global geometry. Adaptive meshing for a large variety of problems, 2D or 3D, including
linear and non-linear, static and dynamic stress analysis, can be very effectively treated in EFM in a rela-
tively simple manner.

The present EFMs include the element free Galerkin (EFG) method (e.g., Belytschko et al., 1994a,b,
1995a,b, 1996a,b; Lu et al., 1994; Krysl et al., 1995; Liu and Yang, 1998), reproducing Kernel particle
method (e.g., Liu and Chen, 1995; Liu et al., 1995a,b), hp-clouds (Duarte and Oden, 1995), diffuse element
method (Nayroles et al., 1992), finite point method (Oqate et al., 1995, 1996), and smooth particle hy-
drodynamics (SPH) method (e.g., Gingold and Moraghan, 1977; Moraghan, 1982, 1988). Reviews and
comparison studies of some of the above mentioned methods have been given by Belytschko et al. (1996a)
and Ogqate et al. (1996).

However, because the meshless methods are still in its infant stage, there exist following major technical
problems for stress analysis for solids and structures:

1. Many methods need a background mesh for the integration in computing the stiffness matrix.

2. Difficulties in the implementation of essential boundary conditions.

3. Complexity in algorithms for computing the interpolation functions, which makes the methods expen-
sive.

To overcome the first problem, a method has been proposed by Beissel and Belytschko (1996), which
results in a completely meshless method. Shape functions in meshless methods are constructed using
methods such as moving least squares (MLS) for all the points within the influence area of a point (or a
Gauss integration point). Therefore the interpolants do not have the Kronecker delta property. This makes
it difficult to impose essential boundary conditions. The method of Lagrange multiplier is used as a
standard method to impose essential boundary conditions. The penalty method is an alternative means for
enforcing the essential boundary condition (Liu and Yang, 1998). Approaches, such as using d’Alembert’s
principle and modified shape functions, have also been proposed (Liu et al., 1996; Gosz and Liu, 1996;
Giinther and Liu, 1998). The third problem is still remaining open, and a break through in this aspect can
bring the meshless method to a new height.

This paper deals with these three problems. A point assembly method (PAM) is proposed as a possible
solution to these problems. In the PAM, the boundaries of the problem domain are represented by a set of
discrete points, and the domain itself is represented by properly scattered points. The influence area of a
point consists of pieces of triangular areas formed by its surrounding points. The displacement in a tri-
angular area surrounding a point is interpolated by the displacements at the point and a pair of consecutive
surrounding points using shape functions. The shape functions used in the present work are obtained in the
same way as those of a triangular element in the conventional FEM. Hence, the shape functions can be
obtained very efficiently and have the Kronecker delta property. The essential boundary conditions can be
simply imposed as it is done in the conventional FEM. Hence, the second and third problems are dealt with.

A variational (weak) form of the equilibrium equation is used to produce a set of system equations for
the triangular areas surrounding a point. These equations are assembled for all the points in the domain,
and hence the first problem is taken care of. Solving these equations for the displacement field, the stresses
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and strains at a point are then computed using the displacements obtained for the point and pairs of the
surrounding points.

A PAM program with an automatic point-searching algorithm has been developed in FORTRAN. Two
dimensional problem is handled in this paper, as the purpose of this work is to present and examine the
concept of the present PAM. Patch tests and convergence studies have been carried out to verify the
convergence of the present method and program. Examples are also presented to demonstrate the efficiency
and accuracy of the present method compared with analytical solutions as well as the conventional FEM
solutions.

2. The concept of point assembly method

Two-dimensional problems are considered here to present the concept of the PAM. For a given problem
domain shown in Fig. 1, a set of points are used to represent the boundary of the domain. The boundary
points are arranged in the order of counter clockwise direction. The internal domain is marked with
properly scattered internal points. The influence area of point A within a cycle of diameter d, has the shape
of a palm. The palm of point A consists of six triangles: ABC, ACD, ADE, AEF, AFG and AGB, which are
separated by six ribs. The palm of point K consists of three triangles separated by two internal ribs and two
ribs on the boundary. A palm can be formed for any given point. The displacement at any point within a
palm can be interpolated using the displacements at three nodes of the triangle hosting this points using
shape functions, which are being used in the conventional FEM. The stiffness of the triangles contributes to
all the points covered by the palm. An assembly for all the points within the domain can then be performed
to form a globe stiffness matrix. A set of globe system equations can be obtained and solved for the dis-
placement at all the points. In retrieving the stress and strain at any point, a palm of the point can be
formed again to compute the stresses and strains in the triangles in the palm. The stress and strain at the
point can be obtained by averaging the stresses and strains in the triangles within the palm.

3. Formulation

The equilibrium equation at a point in a solid can be written the form of

—

V-6+b=0 inQ (1)

where ¢ = {0, g,, axy}T is the stress and b is the body forces in the problem domain Q. The boundary
conditions for displacement u = {u, u, }T and stress ¢ are given, respectively, by

u=u onl, (2)

n-e=t onl, (3)

where u and t are, respectively, the prescribed displacement on the essential boundary I', and traction on
the natural boundary I'y, and n is the unit outward normal to the boundary of domain Q. The functional,
I1, is the potential energy given by

H(u):/g[%e(u):a(u)—wb] dQ—/Qu-de 4)

where u is an assumed displacement vector with C° continuity, and the strain & = {ex &y & }T is ob-
tained by

e=Lu, o=Ds¢ (5)
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where the differential operator is given by

02
s 0] o

ox

LT =

RS

The matrix D in Eq. (5) is a matrix of elastic constants. For isotropic material and plane stress problems, we
have

1 v 0

=y 0 (7)
=10 0 (1-v))2

E
D=

where E and v are the Young’s modulus and Poisson’s ratio of the material. For an anisotropic material, D
can be a full matrix.

Within a palm shown in Fig. 1, the displacement field can be given by
u=N(x)d (8)
where N is a matrix of shape functions. The formulae of these shape functions are the same as those of a
triangle element of the conventional FEM which can be found in any text book on FEM (e.g., Zienkiewicz
and Taylor, 1989). Vector d consists of the displacements at all the points covered by the palm (seven points

for the palm of point A and five points for the palm of point K shown in Fig. 1).
Substituting the expression of u into the weak form Eq. (4) yields:

Ku = f 9)

where K is the stiffness matrix given by

K:/BTDBdQ (10)
Q

Fig. 1. Palm structures for point A and point K.
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where
B =LN (11)
The force vector in Eq. (9) can be given in the form of
f= Nde+/NbdQ (12)
r, Q

Egs. (11) and (12) are integrated over the problem domain by a quadrature scheme which samples the
integrand only at the points (Beissel and Belytschko, 1996). We can then obtain

K =~ Zpu?BT(xI)D(XI)B(XI) (13)
f~ i TONT(xp)t Zcx?NT xp)b(x;) (14)

I=1

where N, is the total number of points in the problem domain, and N, is number of the points on the natural
boundary where traction is prescribed. Coefficients of’ and af* are, respective, the fractions of the area and
the length represented by point I. These coefficients are related to the ratio of area overlapping induced by
the point assembly procedure. In this work, we define
A
Q 1
of =———4Aq (15)
Y
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Fig. 2. Points configurations for patch tests: (a) patch test 1 and (b) patch test 2.
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—

Fig. 3. A cantilever beam.
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Fig. 4. (a) A FEM mesh with triangular elements and (b) point distribution for the PAM analysis.

where A is the total area of the palm (surrounding triangles) of point I, and A4 is the area of the whole
problem domain.

L
I 1
o' =———L 16
1 ZiV‘ILi I'y ( )

where L; is the total length of the natural boundary on the two sides of point I, and L, is the length of the
whole natural boundary of the problem domain. There are some other means to calculate these coefficients
(see Beissel et al., 1996). The conditions are that the summation of all the o7 for all the points must be the
area of the problem domain, and that the summation of all the o * for all the natural boundary points must
be the total length of the natural boundary of the problem domain.

It should be mentioned here that the integration within a palm is carried out exactly as the integrand
B'DB is a constant for a triangle in the palm. Therefore, the stability problem associated with the nodal
integration method (Beissel et al., 1996) does not exist in the present method. An example will be presented
in Section 5 to illustrate this issue in detail. It may be also mentioned here that the approximately equal in
Egs. (13) and (14) can be changed to equal if an algorithm can be designed in such a manner that the
overlapping area is evenly distributed over the problem domain.
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Fig. 5. Convergence of displacement u, at y = —D/2.

. Procedure of point assembly method
The PAM is coded in FORTRAN. The procedure of the program is summarized as follows:

. Discretize the problem domain and its boundary by scattered points. This can be done using any post-
processor for FEM codes.

. Optimize the numbering of the points according to the equation solver. For example, if a half-bandwidth
method is used in the solver, minimize the half-bandwidth.

. Loop over all the points in the problem domain £.

(a) For a given point I, search for all the points within the circle of diameter d,, and choose the sur-
rounding points to form a palm.

(b) Form the matrix of shape functions N for the palm and calculate B matrix.
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Fig. 6. Convergence of displacement u, at y = 0.

(c) Calculate BTDB and assemble it to all the points covered by the palm, using Egs. (13) and (14).
4. End the loop for all the points, and the globe stiffness matrix is formed.
5. Solve Eq. (9) for the displacements at all the points.
6. Calculate the strain and stress at desired points by forming palms for the points.

Most of the above procedures are very much similar to those in the FEM, except an algorithm is needed
to form the palm. The best algorithms are such that ensure an even overlapping in area in the point as-
sembly process, so that the approximately equal in Egs. (13) and (14) can be replaced by an equal. An
algorithm that cannot ensure an even area overlapping will result in an approximated stiffness matrix, and
therefore an approximation in the results. Such an algorithm may not be able to pass the patch test, but
always give an approximated solution for the problem. An algorithm has been developed for forming palm
automatically. The program detects automatically if the overlapping is not even. The effectiveness of the
algorithm is examined in the following section.



G.R. Liu | International Journal of Solids and Structures 39 (2002) 261-276 269

Stress (N/m™2)

E+01
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 3
1.5
b LEGEND
] Analytical
4 feee—— PQM (13x5)
1 - --PAM (25X3)
B —mmm PAM (49X17)
b ——PAM (97X33)
0.5
0
-0.5
-1
-1.5 -
)
-2Tr——¥f+"T T 77— 77— 77— 7T
0 1 2 3 4 5 E-01

y (m?

Fig. 7. Convergence of stress a,, at x = L/2.

5. Numerical results
5.1. Patch test

The first numerical example is the standard patch test, shown in Fig. 2. In these patch tests, the dis-
placements are prescribed on all the outside boundaries of the patch as

u:{;} (17)

Satisfaction of the patch test requires that the displacements of any interior point be given by the same
linear function and that the strain and stresses be constant in the patch.

The present PAM program passes the patch tests exactly for the patches with regularly distributed points
(Fig. 2a), as well as irregularly distributed points (Fig. 2b). The strain and stress obtained in these two
patches were constants.
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5.2. Cantilever beam

Consider a cantilever beam of characteristic length L and height D subjected to a parabolic traction at
the free end as shown in Fig. 3. The thickness of the cantilever is considered to be one unit, and is assumed
to be in a state of plane stress.

The exact solution can be given by Timoshenko and Goodier (1970):

uxz—%[(6L—3x)x+<z+v)(y2—%2ﬂ (18)
Uy = e [3vy2(L —x)+ (4+ 5v)D—2x + (3L - x)xz} (19)

where the moment of inertia 7 of the beam is given by
D3

==
12
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Fig. 9. Convergence of stress g, at x = L/2.

The stresses corresponding to the displacements (18) and (19) are

oulny) = T @
o,(x,y) = (22)
onlin) = -5 (5 ) (23)

In the following numerical examples, the parameters are taken as £ =210 GPa, v=0.3, D =0.5 m,
L=15m,P=1N. Two methods, FEM and PAM are used in the numerical calculation. Fig. 4a shows the
mesh configuration for the FEM calculation with a node density of 13 x 5, and Fig. 4b shows the points
configuration for the PAM calculation with a point density of 13 x 5. In the PAM, the influence diameter is
set to be d, = a, where a is the length of the horizontal distance between the two adjacent points. This
means that for an internal point, four surrounding points are employed (e.g., point 29 in Fig. 4b). For a
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Fig. 10. Comparison of displacement u, at y = —D/2 obtained by PAM and FEM.

point on the boundary, one internal and two boundary points, and for a point at the corner, two boundary
points are employed (e.g., point 9 and point 1 in Fig. 4b).

Fig. 5 depicts the distribution of the displacement in the x-direction on the bottom surface of the beam
(v = —D/2). The results are obtained by the analytical formulae and the PAM with different point densities.
It is shown that the PAM results converge to the analytical solutions, and the PAM results with a density of
97 x 33 coincide with the analytical solution. Fig. 6 shows the distribution of the displacement in the y-
direction. The results shown in Fig. 6 further confirm the conclusions drawn from Fig. 5.

Fig. 7 shows the distribution of the normal stress g,, on the cross-section at x = L/2. Very good
agreement between the PAM results and the analytical results is shown even for the case of point density of
49 x 17. Fig. 8 depicts the distribution of the shear stress g,, on the cross-section at x = L/2. Very good
agreement between the PAM results and the analytical results is shown even for the case of point density of
49 x 17, except on the two surfaces where the shear stress should be zero. The PAM results obtained using
97 x 33 can improve the results but disagreement on the surfaces persists. The similar situation can be
observed from Fig. 9 for the distribution of stress g,,.
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Fig. 11. Comparison of displacement u, at y = 0 obtained by PAM and FEM.

Comparing the results with the results obtained by PAM and FEM, it is found that the accuracy on the
displacement obtained by two methods are the same for the same density of points used, as shown in Figs.
10 and 11. The stress obtained by the PAM are slightly better than that of FEM, when d, = a is used for the
PAM. However, in PAM, we have a freedom to choose a larger d,, which means more points can be
employed for point assembly and the stress—strain calculation. When d, = 1.415a is used instead of d, = q,
there are eight surrounding points for an internal point, five for a point on the boundary and three for a
point at the corner (e.g., point 32, point 11, and point 5 in Fig. 4b). Fig. 12 shows the signification im-
provement on stress a,,, where d, = 1.415a is used. It is seen that the results are much more accurate than
those obtained by FEM. It is, therefore, concluded that the PAM can produce more accurate results for
stresses.

The point integration method has a problem with stability (Beissel et al., 1996), and a stabilization term
is needed in the week form. The stability problem is resulted from insufficient integral points, which can be
evidenced from the oscillation of stress distribution obtained using irregular nodes distribution. Although
the idea of point integration method is employed in the present method, the stability problem does not
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Fig. 12. Comparison of stress g,, at x = L/2 obtained by PAM and FEM.

exist. This is because the integration of the stiffness matrix for a palm can be carried exactly, as the inte-
grand in the triangles of the palm is constant. This has already been seen in the patch test using irregularly
distributed pints (Fig. 2b). To further confirm this, irregularly distributed points are used to compute the
stress distribution in the cantilever beam. The irregular mesh has been generated by randomly moving the
internal points in the regular mesh by up to 20% of the rib length of the palm in a random direction. For an
easy comparison, the points at the cross-section x = L/2 is kept unmoved. The results for the share stress
distribution at x = L/2 is plotted in Fig. 13 together with the analytical results and the results obtained
using regularly distributed points. No oscillation is observed, and the results obtained using regular and
irregular points are nearly indistinguishable from this figure.

As for the computation time, the time needed for the PAM to assemble the global stiffness matrix is
about 2-3 times of that needed for the FEM, depends on d, used in the PAM. However, for most of the
problem, the CPU time used for solving the system equation dominates the total CPU time, and the
stiffness matrix size is almost the same for both methods. Therefore, the PAM is nearly equally efficient as
the FEM. For a problem with point density of 97 x 33 (6402 degree of freedoms in total), the CPU time
required by PAM is about 4% more that by the FEM.
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6. Conclusion

A novel PAM is presented for stress analysis for solids. Two-dimensional problems are considered in this
work. The PAM makes good use of the effective techniques developed over half a century in the con-
ventional FEM without dividing the problem domain into elements. A PAM program with an automatic
point-searching algorithm has been developed in FORTRAN. Examples have been presented to demonstrate
the efficiency of the PAM. The study has drawn the following conclusions:

1. The PAM is an entirely point based method. A mesh of element is totally unnecessary, and a background
mesh for integration is also unnecessary.

2. The PAM is nearly equally efficient as the FEM. For a problem with 6402 degree of freedoms, the CPU
time required by PAM is about 4% more that by the FEM.

3. The accuracy of the displacement obtained by the PAM is equivalent to that by the FEM using trian-
gular elements with the same point density.

4. The accuracy of the strain/stress obtained by the PAM is more accurate than that of the FEM using tri-
angular elements.
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The present method has, unfortunately, drawbacks. The first drawback is that a very dense of points is
needed to obtained accurate stresses. The present method cannot deal with incompressible elastic materials
due to the volumetric locking. Special formulations, or different variational formulation are needed (see,
e.g., Zienkiewicz and Taylor, 1989) to solve this problem. These two drawbacks are inherited from the
conventional triangular finite elements. The third drawback is the difficulty to develop a comprehensive
algorithm to ensure an even overlapping of integration, especially when the irregularity of the point dis-
tribution is severe. An indication on whether the overlapping is even or not can be easily outputted for
checking. When the overlapping is not even, the results obtained are an approximation, and the controlling
of the accuracy needs to be further investigated.
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